Investigating the specific uptake of EGF-conjugated nanoparticles in lung cancer cells using fluorescence imaging

نویسندگان

  • Honglin Jin
  • Jonathan F. Lovell
  • Juan Chen
  • Kenneth Ng
  • Weiguo Cao
  • Lili Ding
  • Zhihong Zhang
  • Gang Zheng
چکیده

Targeted nanoparticles have the potential to deliver a large drug payload specifically to cancer cells. Targeting requires that a ligand on the nanoparticle surface interact with a specific membrane receptor on target cells. However, the contribution of the targeting ligand to nanoparticle delivery is often influenced by non-specific nanoparticle uptake or secondary targeting mechanisms. In this study, we investigate the epidermal growth factor (EGF) receptor-targeting specificity of a nanoparticle by dual-color fluorescent labeling. The targeted nanoparticle was a fluorescently labeled, EGF-conjugated HDL-like peptide-phospholipid scaffold (HPPS) and the cell lines expressed EGF receptor linked with green fluorescent protein (EGFR-GFP). Using LDLA7 cells partially expressing EGFR-GFP, fluorescence imaging demonstrated the co-internalization of EGFR-GFP and EGF-HPPS, thus validating its targeting specificity. Furthermore, specific EGFR-mediated uptake of the EGF-HPPS nanoparticle was confirmed using human non-small cell lung cancer A549 cells. Subsequent confocal microscopy and flow cytometry studies delineated how secondary targeting mechanisms affected the EGFR targeting. Together, this study confirms the EGFR targeting of EGF-HPPS in lung cancer cells and provides insight on the potential influence of unintended targets on the desired ligand-receptor interaction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In vitro Study of SPIONs-C595 as Molecular Imaging Probe for Specific Breast Cancer (MCF-7) Cells Detection

Background: Magnetic resonance imaging (MRI) plays an essential role in molecular imaging by delivering the contrast agent into targeted cancer cells. The aim of this study was to evaluate the C595 monoclonal antibody-conjugated superparamagnetic iron oxide nanoparticles (SPIONs-C595) for the detection of breast cancer cell (MCF-7). Methods: The conjugation of monoclonal antibody and nanopartic...

متن کامل

Comparative Studies of High Contrast Fluorescence Imaging Efficiency of Silica-coated CdSe Quantum Dots with Green and Red Emission

Herein we report the possibility of using green and red emitting silica-coated cadmium selenide (CdSe) quantum dots (QDs) for remarkable stem and cancer cellular imaging, efficient cellular uptake and fluorescence imaging of semi and ultra-thin sections of tumor for in vivo tumor targeted imaging applications. The comparative studies of high contrast cellular imaging behaviours of the silica-co...

متن کامل

Radiosensitization of breast cancer cells using AS1411 aptamer-conjugated gold nanoparticles

Introduction: A main choice for cancer treatment is radiotherapy. But, the radiotherapy disadvantage is damages caused by radiation given to normal tissues/organs surrounding cancer. One way to avoid this is via increasing radiosensitization of cancer cells. Gold nanoparticles (GNPs) have shown sensitizing effect on cancer cells by enhancing their absorbed dose. Unlike earlier ...

متن کامل

EGF Functionalized Polymer-Coated Gold Nanoparticles Promote EGF Photostability and EGFR Internalization for Photothermal Therapy

The application of functionalized nanocarriers on photothermal therapy for cancer ablation has wide interest. The success of this application depends on the therapeutic efficiency and biocompatibility of the system, but also on the stability and biorecognition of the conjugated protein. This study aims at investigating the hypothesis that EGF functionalized polymer-coated gold nanoparticles pro...

متن کامل

Somatostatin Decorated Quantum Dots Nanoparticles for Targeting of Somatostatin Receptors

Due to the unique optical properties like high brightness and narrow emission bands of Quantum dots, it is used as simple fluorescence materials in bio-imaging, immunoassays, microarrays, and other applications. To easy invistigate cell lines that overexpressed somtostatin receptors, somatostatin (SST) was conjugated with Quantum dots carrying PEG amine (Qdots-PEG-NH2). The conjugation of SST t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2010